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Abstract. We consider the control of a single-echelon inventory system under the (r, nQ, T)
ordering policy. Demand follows a stationary stochastic process and, when unsatisfied, is
backordered. Under a standard cost structure, our aim is the minimization of the total average
cost. In contrast to previous research, all policy variables (i.e. reorder level r, batch size O and
review interval 7) are simultaneously optimized. While total average cost is not convex, two
new convex bounds together with a Newsboy characterization of the optimal solution lead to
an exact algorithm with guaranteed convergence to the global optimum. Computational
results demonstrate that the inclusion of the review interval as a decision variable in the

optimization problem can offer serious cost savings.
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1. Introduction
The practical value of periodic review inventory control policies, where ordering
decisions are taken in regular time intervals, is well established (e.g. Silver et al. 1998).

Although theoretically inferior from their continuous review counterparts in terms of average



cost performance (e.g. Veinott 1966 and Lee and Nahmias 1993), periodic policies offer
practical advantages. By not imposing continuous monitoring of inventory status, they can be
easily implemented in real production environments. By allowing for the routine overshoot of
the reorder point, respective models can accommodate lumpy demands without loss of
modeling accuracy. Hence, it is not surprising that the MRP logic, designed to deal with such
demand processes, effectively implements standard periodic review ordering policies (e.g.
Anderson and Lagodimos 1989 and Axsater and Rosling 1994).

Focusing on an established periodic review policy, the (r,nQ,T) policy, in this paper
we study the optimal policy variables determination for a single-echelon inventory installation
and propose an algorithm that guarantees cost-optimal control. While the system operating
assumptions (i.e. stationary demand, full backordering and cost structure) are common in the
field, there is an important differentiation from previous research. Earlier work has considered
the (v, nQ) policy, a reduced version of the (»nQ,T) policy, which assumes a fixed review
interval 7 and where only two policy variables need be determined (the reorder level » and the
batch size Q). In this paper all three policy variables (»,0,T) of the original policy are
simultaneously optimized, leading to solutions offering serious cost savings over those of the
reduced problem.

We start with a review of key previous findings. The (n.nQ,T) policy was originally
proposed by Morse (1959) as an adaptation of the (R, T) policy (also known as base-stock) to
cope with quantized orders. These occur when supplies are constrained to be multiples of
some basic batch-size O, usually reflecting some physical limitation of the supply process
(e.g. pallet-load, container load etc.). Considering the form of the policy, Veinott (1965)
demonstrated that the (s,5) policy is optimal for externally fixed batch-size and zero ordering
cost. Otherwise, the policy is clearly inferior compared to the more general policy, which is
the known optimal policy for unrestricted sunplies (e.g. Veinott 1966 and Federgruen and
Zipkin 1985). This was further supported by the numerical results in Wagner et al. (1965) and
Veinott and Wagner (1965) but who also suggested respective cost difference not to be large

when comparing both policies at their optimal setting.
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For independent demands, Hadley and Whitin (1961), building on the results by
Morse, used Markov steady-state analysis to characterize the distribution of the inventory
position of the (r,nQ,7) policy as being uniform U(r, #+Q) irrespective of the demand
distribution. As recently proposed by Li and Sridharan (2008), this distribution remains
unchanged even for serially correlated demands. Using a general cost structure (the one also
used here), Hadley and Whitin (1963) modelled long-run average cost of the (nQ,T) policy
for Normal and Poisson demands. They also studied the cost function in terms of the policy
variables (», O,T). No analytical properties for the total cost were determined, so concluded
that optimal control can only rely on exhaustive search approaches. Numerical comparisons
with the (»nQ,T) policy showed only marginal éost-differences as well as a tendency for the
policy to often degenerate to (R, 7) at its optimal setting.

Considering the (r, nQ) policy, Zheng and Chen (1992) proposed an algorithm to
compute the ordering parameters (r and Q) that minimize long-run average cost for discrete
uncorrelated demands. Under the cost structure in Hadley and Whitin but omitting review
costs (since the policy assumes a fixed 7)), they proved average cost convexity in the reorder-
level r together with a Newsboy-styled condition at the optimum. While the cost behaviour in
0 was found erratic, Zheng and Chen proposed a convex bound, effectively identical to the
average cost function in continuous review (#, Q) policies (e.g. Zipkin 2000). Implementing
the algorithm, they numerically compared the (», #Q) and (s,S) policies and only found small
cost differences at the respective optima.

These papers, as well as a more recent by Larsen and Kiesmuller (2007) that models
average cost for the (r, nQ) policy under Erlang demand, all considered the review interval T
as fixed, thus not entering the optimal control problem. The only previous study that (to our
knowledge) considers T as a control variable is that by Rao (2003). Focusing on the (R, T)
policy under uncorrelated stationary demands, he showed that this can be analyzed as a
limiting case of the continuous review (r, Q) po_]icy. This allowed him to show that the total
average cost for the (R, 7) policy is jointly convex in both the order-up-to level R and the
review interval T. Therefore any convex optimization algorithm can be used for optimal

system control.
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In this paper considering the (r, nQ, T) policy in its unrestricted form we propose an
algorithm that guarantees convergence to the glcbal optimum in all three policy variables.

The rest of the paper is organised as follows: In section 2 we present the notation and
assumptions used through the paper. In section 3 the (», nQ, T) policy’s total average cost is
modelled. In section 4 bounds for the total average cost are proposed and some properties of
these bounds are obtained. An algorithm for the determination of the optimal policy’s
parameters is presented in section 5. In section 6 we give examples for the determination of
the optimal controls assuming Normal distributed demand, under different cost settings.
Finally some conclusions are given in section 7.

2. Notation and Assumptions

In this section we introduce the notation used tﬁgether with the assumptions underlying the
operation of the inventory system.

2.1 Notation

i The demand rate.

D(1) Random variable denoting cumulative demand through time ¢, i.e demand in the

interval [0, t] .

h p Inventory holding and backordering cost per unit per unit time respectively.
Ko Fixed ordering cost (per ordering decision).

Kr Fixed review cost (per review).

L Replenishment lead time.

R Upper starting inventory position limit (just after a review).

0 Basic batch size (just after a review).

I(R, O, f) Net inventory position at time t.

P Probability of ordering at any review period.

T Length of review interval.

a The a-service measure (non-stock-out probability).
¥ The functions x” =max {0, x} x" =max{0 —x}.

C(R, O, T) Total average cost (per review interval).

26



2.2 Operating Assumptions

We study a single-item, single-echelon inventory installation controlled by (7,70, T) policy.
Inventory status is reviewed every a time interval of length T. In the event an order is placed
after a review, the order quantity is available after the elapse of a, deterministic and known,
replenishment lead time L. Material leaves the installation in response to specific customer
demands. Demand not satisfied from stock is backordered. The demand process is
stochastically non-decreasing in ¢ with mean fu, density f{x,) and cumulative distribution
function F(x, £). As is common in modelling cost we assume that cumulative demand has
stationary and independent increments (see Serfozo and Stidham (1978)). These assumptions
hold if the demand is modelled, for example, either as compound Poisson or Normal
processes (see Rao (2003)). Note that the same assumptions for demand process are also used
in Zipkin (1986) to obtain convexity propertieé for (r, Q) policy.

We also need to clarify the sequence of events within any review interval. (1) Replenishment

orders placed respective lead time L earlier are received. (2) Inventory status is reviewed and
a replenishment decision is taken. (3) Demand is realized. (4) Inventories and backorders are
measured and relevant costs evaluated.

3. The (r, nQ, T) Inventory Policy

The (¥,nQ,T) policy operates as follow: a) Inventory status is reviewed and ordering decisions
taken at regular intervals of length T, b) If the inventory position is found to be below a
reorder level r, a replenishment order is placed; c) Irrespectively of the taken decision the
starting inventory position after any review epoch is given by R-X(0), and follows a uniform
distribution U(r, R), where X(Q) follows a uniform distribution U(0,0) and R=r+0Q.

The size of an order (if it is placed) is nQ, where O a predetermined batch size and n the
smallest integer for which R-X(Q)=r. Note that for independent demands, it has been
established (see Hadley and Whitin 1963) that R-X(Q) follows a uniform distribution Uf(r,
r+Q). As it was recently shown, the same distribution holds even for time-correlated demands
(Li and Sridharan, 2008).

Remark 1. It is worthwhile to note that an alternative definition for (R, 7) policy can be

deduced setting Q= 0.
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This remark allow a unified treatment for (v, nQ, T) and (R, T) policies.

3.1. The cost function under (»,nQ,T) policy

In this sub-section we model the average cost of the system and we obtain the expression for
a-measure, which leads later to the Newsboy characterization of the optimal policy. We
consider the general four element cost structure proposed in the seminal analysis by Hadley
and Whitin (1963). In this context we assume linear holding and backordering penalty costs,
as well as two fixed cost elements: ordering cost per actual replenishment order and review
cost per review occasion. The review cost, K,, incurred every T time units at each review and
the ordering cost, K,, incurred at the review instants where actual replenishment orders are
released (so respective cost coefficient is multiplied by the ordering probability P,). As
discussed in Hadley and Whitin (1963), P, represents the probability that demand between
two consecutive reviews triggers an order at the second review so this clearly implies that
P,=Pr(Q - X(Q) <D(T)). Observe that P, depends on Q and T but does not depend on R.

So, the inventory holding and backordering costs at time # € [0,7'], have been pooled into the

following function:
G(R,0,1) = hE[(I(R,0,6)" 1+ pE[(I(R,0,1)"]
=hE[R-X(Q)-D(L+1))" ]+ E[R- X(Q) - D(L+1))7]

= h(R—%—#(L+f))+(h+p)5[(X(Q)+ D(L+6)-R)"]

+a@ o
d 2 [0=B |70ty M
R 0

:h(R—%——,u(LH)H

note that we use the facts that

E[(I(R, O, N]=E[(I(R, Q, 1)+ E[(/(R, O, 1)]
and

X(Q)+D(L+1) has density

1 Q
5 [Fy-xndx

Thus the average holding and backordering costs per unit time is
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H(R, 0.T) =% [G(r,0,0)at @)

and consequently the average total system cost per unit time can be expressed as:

K, 4K E

EL )= +H(R,0.T) )

Now we obtain the expression for a-measure of service. Since the a-measure is defined as the

non stock out probability we can easily see that
1 T
a(R,Q,T)=1-— [Pr(R- X(Q)~ D(L +1)) < 0d (4)
0

4. Total Cost’s Bounds and Properties

In this section we introduce two bounds to the cost function and present analytic properties
that form the basis for the system optimal control.

Since the ordering probability always satisfies the relation,0< P, <1, the following two

bounds for C(R,Q,T) directly prevail:

B(ROT) =+ H(ROT) 5)
and
BU (R,0,1)= E’-%:El + H(R,0,T) (6)

In the next lemma the optimal value of R is determined for given values of T"and Q.

Lemma 1. Let R(Q,T)=argminC(R,0,T)denotes the optimal R corresponding to fixed T
R

and Q, then R(Q, T) satisfies the condition a(R(Q,T),0,T) =fh—‘?— , where a(R(Q,T),0,T)is
+pP

the a-measure for this 7 and 0 values.

Proof. From ECLQ’T)
dR

=0 we obtain the following Newsboy style equation

T

fitp [Pr(R- X(Q)- D(L +#) < 0d =0

I

h—

or

h—(h+p)1-a(R,0,T)=0
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and finally we get
a(R(Q,1),0,T) =~ (7
h+p

Direct application of this result clearly reduces the problem state-space (by one variable), thus
facilitating optimal control parameters.

Notice that the optimal R for fixed T and Q is the same for the average cost per unit time, C(R,
O, T), and for its bounds, By(R, O, T) and By(R, O, T) so the next lemma follows easily:

Lemma 2. R(Q,T)=argminC(R,0,T) =argmin B, (R,Q,T) = argmin By (R0, 1)
R R R

Lemma 3. For every given T let R(Q;T)=argminC(R, Q,T)denotes the optimal R
R

corresponding to O, then By(R(Q;T), O, T) and By(R(Q;T), O, T) are increasing and convex
functions in Q.

Proof. Zheng (1992) in Lemma 4 prove that the function G(R(Q;T), O, ) is an increasing and
convex function of O so the same holds for the functions B,(R(Q; T), O, T) and By(R(Q:T), O,
T) (see also figure 1).

It is worthwhile to note that By(R, O, T) and By(R, O, T) represent the cost for systems, which
operate under a (7, nQ, T) policy but it forces to order at each review epoch (under different
fixed costs). In such circumstance it is know that these systems require Q=0 (Veinott 1966)

and consequently it is optimal for these systems to operate under (R, T) policies.
Lemma 4. Let R(0,T)=argminC(R, 0,T) denotes the optimal R corresponding to 7 for 0=0,
R

if D(t) is stochastically increasing linearly then B,(R(0,T), 0, T) and By(R(0,T), 0, T) are
convex function in 7.

Proof. From Rao (2003) Theorem 6, By(R, 0, T) and By(R, 0, T) are jointly convex in R and T
s0 BL(R(0,T), 0, T) and By(R(0,T), 0, T) are convex function in 7" (see also figure 2).

It is interesting to observe that in the above both B,(R(0,T), 0, T) and By(R(0,T), 0, T)

represent the optimal cost of (R,T) policies (by definition obtained from the (v,nQ,T) policy
with O =0) for given T. Therefore, the optimal (#,nQ,T) policy is bounded above and below

by specific (R,T") policies derived from the bounds in (5) and (6).
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The next result follows naturally.

Lemma 5. lim[B, (R, 0, T)~B.(R, 0, T)]=0

5. Optimal Control

In this section we present an algorithm for the determination of the optimal values for (R, O,
7). This algorithm converges to the optimal in a finite number of steps for any given accuracy.
Algorithm R*,Q*,T' = Min< R,nQ,T >Cost(K,,K,,L, u,0,h, p)

inputs: review cost, ordering cost, lead-time, demand distribution mean and variance,
holding and backorders cost coefficients

outputs: control parameters for order-up-to level R, order quantum Q (in multiples of a

quantum order Q,, review period interval T (in multiples of a time quantum Tj)

1. set C' =+w
2. for =T, 2%,: do
a. for 0=0;, 204. do
i. let R’:argfgninC(R,Q,T);
ii. let Cco" =C(R',Q.T), Bfff:mﬂinBL(R,Q,T);
1iis if € el
1. set C'=C%", RR=R,0'=0,T"=T;
iv. end if;
v. if BY' >C'break;
b. end for;

"

c. let B, —rgiQnBL(R,QaT)F

d. if B,>C" break;
3. end for
4. return (R,0,T"):
End.

The algorithm is guaranteed to terminate as the lower bound of the function goes to infinity as

T —+wand By (R(QO;T), O, T) is increasing and convex functions in @ and also
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éim B, (Ry,0,T) =+ . Therefore, the conditions in steps 2.a.v as well as 2.d will eventually

be met and the algorithm will terminate. The conditions are also sufficient:
1. For the case of step 2.a.v, there is no point in searching for any higher Q as it is
guaranteed that the cost function, being greater than the lower bound will always be
greater than our current incumbent value, as all other values in the range [T, Lx[0. ]
will yield higher costs (the lower bound is now increasing in Q).
2. For the case of step 2.d it is obvious that at the value of T for which the condition is
met, the sequence B; is increasing (otherwise it would have been impossible to have

found a cost value less than the lower bound) and thus, from now on the sequence

C, =ER11'(£C(R,Q,T) will always be above the current C’which becomes the global

optimum,

The previous results summarized in the following:

Proposition. The proposed algorithm converges to the optimal in a finite number of steps.

6. Numerical Results |

We have applied the proposed procedure to determine the optimal controls assuming Normal
distributed‘ demand with E(D())=tu and Var(D(t)) =tc’, with 4=10, =3, L=5 for a
number of different cost coefficients (the formula for total average cost assuming Normal
distributed demand is derived in the Appendix). In addition note (see Rao, 2003) that all

feasible reorder intervals must be at least 7__and demand rate u is sufficiently larger than o

(#>30) so that ut>>g+/t for al t21f . and consequently the probability of negative
demand is negligibly small for T>7_ . The results are shown in Table 1 below. The first

four columns in Table 1 determine the cost coefficients of the problem. The columns entitled
Ropt and Topt under the heading “(R,T) Policy Optimization” are the optimal controls of the
(RT) policy applied to the problem, and RTcost is the optimal cost of the (R, T) policy. The
columns #*, 0" and 7" under the heading “(R,nQ,T) Policy Optimization” denote the optimal
controls for the policy (R,nQ,T) when all three parameters are allowed to vary, and the

column denoted C*(R*,Q*, T") denotes the optimal value of the cost function of the (R »nQ,T)
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policy. Finally, the last 3 columns determine the optimal controls R" and Q" together with the
value for the optimal (R,nQ,T) policy when ihektime parameter (the length of the period) is
arbitrarily set to 1 and not allowed to vary.

The rows in bold are the cases where the (R,nQ,T) policy is strictly better than the simpler
(R, T) policy. As can be seen, the differences of the policies in terms of the optimal cost are
relatively small in all cases; in most cases, the optimal (R,nQ,T) policy reduces to the (R,T)
policy. Nevertheless, notice the important role the T parameter (length of period) can play in
the optimal cost determination. For example, for the case K,=250, K,=1, h=10, p=1, the
optimal (RnQ,T) policy is more than 270% better than the optimal policy determined by
fixing the parameter 7=1 !.

7. Conclusions

In this paper we developed an algorithm for computing optimal (», nQ, T). This algorithm is
constructed incorporating results for (#, Q) and (R, T) policies. To the best of our knowledge
only results for (v, nQ) policy, a special case of (r, nQ, T) policy with T=1, have been
presented by Zheng and Chen (1992) and recently by Larsen Kiesmuller (2007). The
computational findings presented in the previous section indicate serious cost savings when
the parameter T is a decision variable. In addition a close relation between the (¥, nQ, T) and

(R, T) is concluded. From B, (R,0,T) the optimal cost of the (R, T) is an upper bound for the

optimal cost of (, nQ, T). While the numerical results show that in many cases the two costs

coincide.
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Table 1. Optimal Control of (R, D), (BnO,T) & (R,nQ,T=1) Policies

L=5, p=10, 6=3 (R,T) Policy Optimization (r,nQ,T) Policy Optimization (r,nQ,T=1) Policy
Kr Ko h |p [Ropt [Topt [RTecost [r*=R*-Q* |Q*[T* |[C*(R*,Q*,T*) |r*=RI1*-Q1* |Q1*|C*(R¥,Q*T=1)
1 1 1 1 56,1] 124 7,98 559 0 12 7.98 54,93 0 8,07
1 1 1] 10| 6443 0,89 15,79 64,53| 0] 0,9 15,79 65,22] 0 15,83
1 1 1 100 70,93 0,76 22,32 71,29 0f 0,8 22,33 72,95 0 22,59
1 1l 10 1 44,79 0,97 15,51 44,89 0 1 15,51 44 89| 0 15,51
1 1| 10] 10 52,57 0,52 60,04] 52,48 0] 05 60,02 54,93 0 62,73
1 1| 100 1 37,3 087 21,78 37,36, 0 0,9 21,78 37,61 0 21,83
1] 50 1 1| 73,121 471 24,01 73,070 0] 4,7 24,01 31,5 47 24,62
1 50 1] 10f 8528 3,51 37,62 53,17 37| 0,8 37,26 54,36 37 37,34
1 50 1| 100 93,3 3,17 46,96 62,09] 35| 0,6 45,56 65,02| 35 46,02
1] 50 10 1| 50,78] 3,67 35,96 50,82| 0] 3,7 35,96 18,63| 37 37,22
1] S0 100 10[ 58,71 1,78 100,21 43,49| 18| 0,5 100,07, 45,46| 19 102,69
1| 50| 10| 100 67,26 1,28 186,37 55,18| 14 0,3 182,28 65,22 0 189,33
1] 50[ 100 1| 41,19 349 43,69 41,21 0] 3,5 43,69 10,28 35 45,54
| 50| 100 10 46,08] 1,39 181,22 46,09 0] 1,4 181,22 44,89 0 186,11
1| 250 1 1 100,1{ 10,11 51 100,05/ 0]10,1 51 4,5 101 51,58
1| 250 1) 10 120,49 7,54 73,77 48,35 77 0,9 72,2 48,89 77 722
1| 250 1] 100 130,55 6,94 86,54 60,01) 74| 0,7 82,15 62,1] 74 82,48
1| 250 10 1| 5593 7,7 71,03 55,93 0 7,7 71,03 0| 61 743
1] 250, 10| 10[ 66,75 342 176,45 35| 35| 0,5 175,08 37,49 35 176,38
1| 250/ 100 1. 43,8 741 80,3 43,8 0] 7.4 80,3 0,01 48 89,25
1] 250 100 10| 49,06 2,69 27828 49,08 0] 2,7 278,29 26,76| 27 285,24
250 1 1 1 100,1] 10,11 51 100,05 0[10,1 51 5493 0 257,07
250 1 1 10] 12049 7,54 73,77 120,11 0] 7,5 73.77 65,22 0 264,83
250 1 1] 100] 130,55 6,94 86,54 130,15 0] 6.9 86,54 72,95 0 271,59
250) 1| 10 1| 5593 7,7 71,03 55,93 0] 7,7 71,03 44,89 0 264,51
250 1) 10| 10| 66,75 342 17645 66,62 0| 3.4 176,45 54,93 0 311,73
250 1 10| 100 77,1 2,53 290,51 76,82 0] 2,5 290,53 6522 0 389,35
250) 1| 100 1 43,8 741 80,3 43,8 0] 7.4 80,3 37,61 0 270,83
250 1| 100] 10/ 49,06 2,69] 27828 49,08 0] 2,7 278,29 4489 0 386,13
250 1) 100f 100 56,64 135 837,18 56,87 0] 14 837,48 54,93 0 858,33
2500 50 1 1| 104,36] 10,99 55,63 104,55 0] 11 55,63 31,5 47 273,62
250 50 1| 10| 126,59 8,23 79,98 126,32) 0] 8,2 79,98 54,36, 37 286,34
250, 50 1| 100] 136,98 7,59 93,29 137,12f 0| 7.6 93,29 65,02 35 295,02
250 50, 10 1| 56,67 838 77,13 56,69 0| 84 77,13 18,63 37 286,22
2500 50 10 10| 68,12 3,7 190,2 68,1 0] 3,7 190,2 45,46 19 351,69
2500 50[ 10[ 100 78,86 2,75| 309,07 78,47 0 2,7 309,1 6522 0 438,33
250) 50| 100 1| 44,13] 8,08 86,63 44,14 0] 8,1 86,63 10,28] 35 294,54
250| 50| 100] 10| 4947 29 29581 49,46 0] 2,9 295,81 44,89 0] 435,11
250) 50| 100 100] 57,11) 145 872,17 56,87 0] 1.4 872,47 54,93 0 907.3
250/ 250 1 1 120,58 14,21 71,48 120,55 0f14,2 71,48 4,5] 101 300,58
250] 250 1| 10| 147,56 10,58 101,25 147,73] 0[10,6 101,25 48,89 77 321,2
250] 250 1| 100/ 159,04 9.8 116,3 159,05 0 9,8 116,3 62,1 74 331,48
250 250[ 10 1 59,05 10,71 98,08 59,04| 0[10,7 98,08 0] 6l 3233
250, 250, 10| 10 72,9 4,67 237,97 73,07 0 4,7 237,98 37,49 35 425,38
250] 250] 10[ 100] 85,01 3,48 3733 85,19 0 3,5 373,31 56,25 27 535,87
250[ 250 100 1 45,11 1034] 108,34 45,08 0[10,3 108,34 0,01 48 338,25
2501 250| 100[ 10| 50,72| 3,64 356,88 50,66 0 3,6 356,9 26,76| 27 534,24
250] 250] 100] 100| 58,64 1,76 996,49 586i I 1§ 996,64 54,93 0 1107,22
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Figure 1: Plot of the cost function and its bounds as a function of the base order quantity Q at their
minimum over R, for K,=50, K,=250, L=5,4=10,0=3,h=1,p=1,T=6. Both bounds are convex increasing.
Notice however that the function C(Q) has two local minimums (the first at 0=0). The upper bound
coincides with the cost function for 0<50.

mingB (R0.T)
———mingB (RO
minRIQC(R,CJ‘T)

180} |

160 - |

140+ %

120+ L

Cost

100 | “

.
80 _M
B0

0}

)
o
T

o
-
=
o

Figure 2: Plot of the cost function and its bounds as a function of the period length T at their minimum
over R and Q, for K,=1, K,=250, L=5, u=10, ¢=3, k=1, p=10. Both bounds are convex but not
increasing in 7. The function C(7) has again two local minimums (the first is the global minimum).
Also notice that the upper bound coincides with the actual cost function for 7>5.
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Appendix: Closed-form expressions for Normal demand
Assuming Normal distributed demand, we now obtain the total average cost and « -service

measure, Since we assume uncorrelated Normal distributed demand, the demand over ¢
consecutive periods is also Normal with E(D(¢))=tp and Var(D(t)) =tc?. In the following,

we make use of the standardizing ratios:

M, =

Z = R—Q~m|:_r—tp

i ‘GJ;}’R’ o’

We start by modeling average total cost C(R, O, T) in (3). So firstly, we need to model the

_ 8
ol ”

ordering probability P,. By standardizing the variable D(T) this can be expressed as:

1 (re-M

:Pr(u>w)=I—Pr(u£w)=1—E . " D(x)dx

where
u~N(0,l)and w~U(-M,,R, —M,)and ®() is the cumulative distribution function for the

standard Normal.
We can directly evaluate the integral above (using integration by parts) and obtain the average
fixed costs, say @(Q,T):

K. +K, K,

QD)= T TR,

o (@(Ry = M)+ (Ry = M )D(R, — M) — (M) + M, O(-M;) (9)
where @(.) is the density function for the standard Normal. We consider now average holding

and backordering cost, H(R, O, T). Since E(R-X (©@)=R —% =r +% we only need to

determine E(/(R,Q,t)”). By standardizing the Normal variable D(L+¢), this can be expressed
in terms of the variables u ~ N(0,1)and w~ U(0,R,,,)
So

oNL+i
R

L+t

IR 1=

g L +1 JZLH"'RL-H
ZLH

[ Or=xppas = T2 [ gx) - x4 2o (10)

L+

Using again integration by parts (twice), after some algebra a closed-form expression for

E(I(R,Q,1)7) is obtained. So, we finally get H(R, O, T) as:
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HR, 0, D=HR-Z-u+ 2B [ PR, + R, 410, R

2 2T » (11)
+(ZL+1 + RL+£)¢(ZL+I + RL+1 ) = (ZL2+.! + 1)(D(ZL—H) _ZL+t ¢(ZL+I ) _RL+I(2‘ZL+I & RLH)}dt‘
Thus, a closed-form expression for average total cost model under Normal distributed demand

is now fully determined as the sum of (9) and (11).

In order to apply the Newsboy-styled condition we also need to model a(R,Q,T). But, this is
nearly identical to the ordering probability P,, so it can be modeled analogously. Using

identical steps, we finally obtain:

1

TR {¢(ZL+.' + RL+1) e (ZL+r + RLH )CD(ZLH + R!.H) - ¢(ZL+1) - ZLM('D(ZLH)}dt (1 2)
L

aROT)=[

+i
which, determines a closed-form expression for thea -measure under the conditions

considered.
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